Scoliosis, Morton’s Neuroma, and Just in Time Learning – Movement Debrief Episode 22

Movement Debrief Episode 22 is in the books. Here is a copy of the video and audio for your listening pleasure.

Here were all the topics:

  • Thoughts on Treating Scoliosis
  • Thoughts on Treating Morton’s Neuroma
  • Why I prefer Just in time vs just in case learning

If you want to watch these live, add me on Facebook, Instagram, or Youtube. They air every Wednesday at 8:30pm CST.



Here were the links I mentioned tonight

Advanced Integration Day 4: Curvature of the Spine

PRI Advanced Integration

Ipsilateral Hip Abductor Weakness After Lateral Ankle Sprain

Method Strength – Dave Rascoe

Here’s a signup for my newsletter to get a free acute:chronic workload calculator, basketball conditioning program, podcasts, and weekend learning goodies:


Check out the mentor program

Thoracic Outlet Syndrome, New Grad Advice, and Interview Questions – Movement Debrief Episode 21

Movement Debrief Episode 21 is in the books. Here is a copy of the video and audio for your listening pleasure.

Here were all the topics:

  • The step-by-step process of treating someone with Thoracic Outlet Syndrome
  • How to leverage your strengths as a new grad searching for a job
  • Why new grads need mentors
  • My favorite questions to ask interviewers and to find out about a company

If you want to watch these live, add me on Facebook, Instagram, or Youtube. They air every Wednesday at 8:30pm CST.



Here were the links I mentioned tonight

How to Design a Comprehensive Rehab Program

All About Jobs – Movement Debrief Episode 20

“The Briefcase Technique” by Ramit Sethi

Join my mentorship program, get a movement consultation, or let me design an online fitness program for you.

Here’s a signup for my newsletter to get a free acute:chronic workload calculator, basketball conditioning program, podcasts, and weekend learning goodies:


Check out the mentor program

Death of Vertical Tibia, Usain Bolt, Complex Patients, and More – Movement Debrief Episode 13

Movement Debrief Episode 13 yesterday involved quite a few rants. Must’ve been the ketones talking.

Here’s what we talked about:

  • Restoring sensation with my patient with low back pain
  • Why it’s okay to have an angled tibia during squatting
  • Would any intervention help/hurt Usain Bolt?
  • The complexity of Usain Bolt
  • Struggling with a complex patient
  • Dealing with uncertainty
  • Embracing the struggle

If you want to watch these live, add me on Facebook, Instagram, or Twitter. (occasionally) They air every Wednesday at 8:30pm CST.


Here were some of the links I mentioned in this Debrief.

How to Deadlift – A Movement Deep Dive

Squatting Bar Reach – A Movement Deep Dive

The Sensitive Nervous System – Read my book notes here

Clinical Neurodynamics- Read my book notes here

A Study of Neurodynamics: The Body’s Living Alarm

Mobilisation of the Neuroimmune System – Read the course notes here

Explain Pain– Read the course notes here

Extreme Ownership

The Obstacle is the Way

Ego is the Enemy

The Subtle Art of Not Giving a F*ck

Master the Fundamentals of PT, Neurodynamic Tricks, & Check Your Ego – Movement Debrief Episode 7

Episode 7 of the Movement Debrief (aka The Movement Awakens) occurred last night.

I can only imagine how devastated you are that you missed it.

But hey, though I think it’s way more fun live, I have a copy of the video below, where we discussed the following topics:

  1. Why fundamental PT skills are still relevant
  2. Why the basic clinical exam is incredibly important
  3. Determining if you can or cannot help your patients
  4. A simple trick to making any movement a neurodynamic test
  5. Doing what is best for the patient, not your ego or agenda

If you want to watch these live, add me on Facebook or Youtube. They air every Wednesday at 8:30pm CST.


Master Sagittal Plane, Coaching Progressions, Detaching, & TFL Inhibition – Movement Debrief Episode 5

Did you miss Movement Debrief live yesterday? Though much more fun live, I have a video of what we discussed below.

This debrief was quite fun, as we had an impromptu viewer q&a. Thank you Alan Luzietti for the awesome questions! If you follow along live on Facebook or Youtube, I will do my best to answer any questions you ask.

Yesterday we discussed the following topics:

  1. Why you should emphasize sagittal plane activities longer than you think
  2. How to coach exercises to maximize client learning and compliance
  3. Why detaching from your client encounters makes you a better clinician
  4. Viewer Q&A – “centering from the chaos” & TFL Inhibition

Lastly, if you want the acute:chronic workload calculator I spoke about, click here.

Without further ado:

The Ultimate Guide to Treating Ankle Sprains

A Humdinger No Doubt


Ankle sprains. Such a bugger to deal with.

Worse than childbirth, as David Butler might say.


Ankle sprains are one of the most common injuries seen in basketball. The cutting, jumping, contact, fatigue, and poor footwear certainly don’t help matters.

Damn near almost every game someone tweaks an ankle.

Treating ankle sprains in-game provides quite a different perspective. Rarely in the clinic do we work with someone immediately post-injury. Instead, we deal with the cumulative effects of delayed treatment: acquired impairments, altered movement strategies, and reduced fitness.

The pressure is lower and the pace is slower.

You shed that mindset with the game on the line. You must do all in your power to get that player back on the court tonight, expediting the return process to the nth degree.

I had a problem.

Figuring out the most efficient way to treat an ankle sprain was needed to help our team succeed. I searched the literature, therapeutic outskirts, and tinkered in order to devise an effective protocol.

The result? We had 12 ankle sprains this past season. After performing the protocol, eight were able to return and finish out the game. Out of the remaining four, three returned to full play in two days. The last guy? He was released two days after his last game.

It’s a tough business.

The best part was we had no re-sprains. An impressive feat considering the 80% recurrence rate¹.    Caveats aside, treating acute injuries with an aggressive mindset can be immensely effective.

Here’s how. Continue reading “The Ultimate Guide to Treating Ankle Sprains”

9 weeks with Bane, I mean Zac…Oops Sorry Wrong CI

Only one wears glasses but both are alternating and reciprocal warriors.
Only one wears glasses but both are alternating and reciprocal warriors.

Note from Zac: This is my first guest post, and to start things up is the one and only Trevor Rappa. Trevor was my intern for the past 9 weeks and he absolutely killed it. Here is his story.

It’s very exciting for me to get to write a guest post for Zac’s blog that I have read so many times and learned so much from. The experience I have had with him over these past 9 weeks has been incredible and I hope to share some of it with all of you that read this.

He challenged me to think critically in every aspect of patient interaction: how I first greet them, which side of them I sit on, the words I use, and how I explain to the patient why I chose the exercises they’ll go home with. All of this was to create a non-threatening environment to help to patient achieve the best results they can.

He also taught me how to educate patients with a TNE approach, incorporate other interventions such as mirror therapy into a PRI based treatment model, and deepened my understanding of the neurologic concepts behind performance.

Therapeutic Neuroscience Education

Perception of threat can lead to a painful experience which will cause a change in behavior. It’s the PT’s role to introduce a salient stimulus to attenuate the perception of threat in order to cause a positive change in experience and behavior (Zac and I came up with that, I really like it).

Pain is not the enemy. Teaching patients that their pain is normal and it doesn’t always mean that they are damaging themselves can be challenging as pain is often the reason patients seek out or are referred to PT. Some of the points we tried to teach patients were

  • Pain is there to keep you safe, which is good
  • Pain does not equal tissue injury
  • No pain, no gain is not what we’re looking for
  • Discomfort is okay
  • Knock on the door of pain, don’t try to kick it down

A large part of educating patients is helping them re-conceptualize why they are having pain. Most patients think of pain in terms of a pathoanatomical model (ie tissue abnormality=pain) and this is perpetuated by a lot of members in the medical community. The pathoanatomical language often causes a higher perception of threat and induces greater feelings of being broken, hopeless, and unfixable.

Re-educating the patients that what they are experiencing is normal and teaching them why it is normal helps decrease their perception of threat. We do not want to use language that will make patients more threatened, like telling a 20 year old that they have the spine of an 80 year old (numerous times our patients have been told that by other medical professionals). Getting them out of a mindset that if they move a “faulty tissue” they will make their situation worse is one step in this process.

Regardless of whether the patient is dealing with a more acute injury or one that has become chronic, there are three things we taught each patient that we would do in PT to help decrease some of the sensitivity they may be dealing with. Those three things are movement, space, and blood flow. These three things require the patient to be active in their therapy which gives them control.

Many of the patients with chronic conditions had stopped doing the things they enjoyed. Giving them activities which they can do without perceiving pain, or that can help decrease their pain, shows patients that they do not need to rely on external passive interventions to feel better. Getting patients to believe/understand that they have the control and power to make themselves feel better is one of the most important things a PT can do.

Mirror therapy, sensory discrimination, and PRI

Learning how to use different interventions to help decrease sensitivity and pain was huge for me. We used mirror therapy with different types of patients whether they had chronic pain or were post-surgical. The mirror activities usually started with the patient moving their unaffected limb while watching their affected limb move in the mirror. For example, if you right arm hurts you’d move your left arm while looking at the mirror because it would appear that your right arm is moving. We would progress patients to where they were moving their affected limb behind the mirror while still watching the reflection of their unaffected limb moving in front of the mirror. With the example above, you would still be watching the reflection of your left arm in the mirror making it look like your right arm is moving but would also be moving your right arm behind the mirror. This helped introduce patients to moving a sensitive area without experiencing pain, thus decreasing the threat of movement.

Numerous RCTs have shown this to be true.
Numerous RCTs have shown this to be true.

Another intervention I had not used before was sensory discrimination. We used this mostly in our post-surgical or more acute population to help decrease the local sensitivity after an injury and to try de-smudgify (that may or may not be an actual word) their homunculus [note from Zac: Totally is].

Sharp-dull discrimination was used first, then we progressed to two-point discrimination and usually ended with graphesthesia. The progress for patients from not being able to discriminate between sharp-dull to having graphesthesia showed me how powerful the role of the somatosensory homunculus is in the pain experience.

And of course, I learned more PRI from Zac. He challenged me to use more integrated non-manual techniques with patients while also limiting the number of cues I used. This was great because it is very easy for me to over coach these techniques. He also gave me a better understanding of some of the big concepts in PRI, such as neutrality.

Neutrality vs Hypofrontality

Neutral is a huge word in PRI that is often thought of as the end game when in reality it is just the beginning of a PRI treatment. The end goal is to get someone alternating and reciprocal. The idea of neutral always made sense to me as a good goal for performance as “neutral” joint positions is where the greatest force would be able to be produced. Talking to Zac about this he brought up what Bill Hartman Grandpa 🙂 has said: Neutral is a neurologically prefrontal state in which learning can occur, as the prefrontal cortex (PFC) is active during tasks that require attention. However, this is not a state you want an athlete performing in.

An active PFC is good when athletes or patients are in rehab because their cerebellum and basal ganglia are learning new movements that can then be used with less activity from higher cortical areas during performance. The movements used during these activities can become reactive after enough learning, practice, and repetition (those 3 things go hand in hand).

During performance or training we would not want an athlete using the higher cortical areas that elicit attention as this would make them slow and inefficient. Instead, we would want them fast and efficient (ie reactive and reflexive). A transient state of hypofrontality allows an athlete to reach a state of “flow”, which Mihaly Csikszentmihalyi describes in his book Flow, which is where the highest levels of performance occurs. This would allow the lower reactive (cerebellum and basal ganglia) and reflexive (brain stem) centers of the brain to essentially take over making them fast and efficient.

So from a theoretical neurologic stand point you do not want an athlete in a prefrontal state during performance. Good rehab and programming can help them become alternating and reciprocal through graded exposure and relearning of certain movement patterns in a neutral (prefrontal) neurologic state. Once this foundation is there, power and capacity can be added through training (which Zac talks more about here ). This may allow an athlete to stay alternating and reciprocal during transient states of hypofrontality when performing, not “neutral”.

Another concept that stood out to me from talking with Zac is the difference between extensor tone and extension. Extensor tone is necessary for power production during performance but it does not necessarily mean that the athlete is going into a position of extension. When someone is in extension they limit their degrees of freedom for movement and thus their movement variability. Using extensor tone from a neutral position, for lack of a better term, would allow them to display power while maintaining their potential movement variability (be alternating and reciprocal). This idea was something that made things click for me.

In summary…

I learned a lot from Zac and want to thank him for all his help and time he spent teaching me. Needless to say, this was an amazing clinical internship for me and I cannot recommend enough that other students should try to get Zac as their CI or for patients to get treated by Zac. He is the real.

Zac Cupples and Iron Sheik same thing
Zac Cupples and Iron Sheik same thing

And now what everyone has been waiting for… Zac quotes

Help for cueing exercises

  • “Shakin’ like a polaroid picture”
  • “We don’t want Fat Joe and the lean back”
  • “Do you remember the three little pigs? I want you to be the big bad wolf and blow their house down”
  • “Do you have the big 3? Jordan (L abs), Pippen (L adductor), and Rodman (L glute med)?”
  • “We like a tight right butt and we cannot lie, the other therapists can’t deny”
  • “I’ll start calling him Buffalo Bill, cause he’s abducting like crazy”
  • “We don’t want you to have hamstrings like Goldmember”
Hamstrings like Goldmember = POTS
Hamstrings like Goldmember = POTS

Zac after getting his wisdom teeth out, he doesn’t remember saying these things

  • “I have lateral trusion!”
  • “Check out this IR” and then he self-tested his own HG IR
  • “I ain’t got time to bleed”
  • “Nobody makes me bleed my own blood”

Other favorites

  • “If you ain’t assesin’ you guessin’”
  • “There’s 45 miles of nerves in the human body if you put them all in a straight line, but don’t try it at home cause you’ll die.”
  • “…hmm..interesting” in Bill Hartman Grandpa’s voice
  • “…sure about that?” in grandpa’s voice
  • “Her teeth told me she had bunions”
  • “I don’t know why he told us the same diagnosis five times.”
  • “Breathing is really important. The research has shown if you don’t do it you will die”
  • “How about this word, variability. How about this word, salience. How about this word, anti-fragile. How about this word, POTS.”

Trevor Rappa is a student at Columbia University and will graduate this May with his DPT. He has clinical experience with Lori Thomsen at the Hruska Clinic and with Zac Cupples at East Valley Spine and Sports. Upon graduation, he will be working at Peak Performance in NYC. You can get in touch with Trevor by email at or on twitter @TrevorRappa.


Come Hang With Me: Courses At My Clinic

Dear Readership

 We are hosting several courses at my clinic this year, and we would love to have you, the readers, attend.

We...The readership
We…The readers

The three courses that East Valley Spine and Sports will be hosting are all excellent courses. I have taken two of these classes prior, and the third I have taken a prior rendition of. And let me tell you, these courses are boss.

Aside from us bringing some excellent content, you will also have the opportunity to hang out with a good group of people, and imbibe in some good beverages with me.

Class is next, the course is nice, and we can talk neuro all night.
Class is next, the course is nice, and we can talk neuro all night.

Here is what we are bringing.

PRI Pelvis Restoration: March 28th-29th

 I took this course a little over a year ago (read the review here) and I am very excited to be learning from Lori again. She presents this very complex material in a systematic and understandable fashion.

Most importantly, she’s funny!

Thank you, she'll be here two days.
Thank you, she’ll be here two days.

Signup for the course here.

ISPI Therapeutic Neuroscience Education: Educating Patients about Pain: June 6th-7th

Adriaan Louw is one of the best speakers I have heard, and the material is priceless (read my review here).

10% chance Adriaan will wear this outfit at the course. 100% chance the class will be stellar.
10% chance Adriaan will wear this outfit at the course. 100% chance the class will be stellar.

This course gives several practical insights as well as easy-to-learn neuroscience education that will help you become adept and educating patients on pain.

Signup for the course here.

ISPI Neurodynamics: The Bodies Living Alarm: October 17th-18th

 I took a version of this class when Adriaan spoke for the NOI group, and I am excited to see what tweaks have been made since. This time we are bring Louie Puentedura in to teach the class. I am excited to hear his perspective, as I have never seen him talk. Adriaan speaks highly of him, so he’s okay in my book!

And it's not an easy read.
And it’s not an easy read.

Signup for the course here.


We look forward to seeing you. Come learn, laugh, and party with us in lovely AZ.

Post 100: Sexifying Upper Quadrant Post-Op

I Wrote a Lot

It’s interesting to think how much this blog has changed since I started writing in February 2013.

We’ve gone from cliff notes of books, to cliff notes of courses, to the occasional self-musing.


The blog. She is my muse, my flame.
The blog. She is my muse, my flame.

While I still plan on reviewing and assimilating courses I take, my hope is to expand and reflect upon whatever is in my brain a smidge more.

It makes sense to start this trend with post 100.

And today, postoperative care is piquing my interest.


Yes, post-op intervention is a guilty pleasure of mine. And it’s not because it’s easy.

Far from easy.

Post op treatment gives you a license to create under various constraints. Meaning you have to dig a little deeper to achieve desired goals.

I think it can be way sexier, and effective, than your typical post-op protocol BS. So let’s create some successful post-op fun.

In post op, not sure if it was ever there.
In post op, not sure if it was ever there.

The First Constraint

Before we even talk about specific patients, we have to first look at the largest constraint yet: available tools.

At my current digs, I don’t have much of anything in terms of heavy weights. So here is what I have at my disposal that I can implement:

  • 1-on-1 care for 60 minutes
  • Kettlebells: 10, 15, 25 pounds
  • Therabands and theratubes of various sizes
  • Cook bands of various resistances
  • PRI trial orthotics (mouth splints, arch supports, reading glasses, yada)
  • Steps
  • Tape
  • IPAD
  • 3D stretch cage (aka very expensive equipment to tie therabands to)
  • Access to higher level brain centers
  • Heart of gold

We keep things simple at EV.

All day every day at EV
All day every day at EV

Early Stages

This is every clinician’s favorite rehabilitation stage, namely because it is incredibly boring.

That is, boring if said clinician has absolutely zero temporal wobble.

You can be amazed at what the patient can actually be do at this stage to expedite the rehab process once movement constraints are lifted.

The most common upper quadrant restriction involves no movement of the involved extremity.

The goals during this stage ought to include:

  • Promote a safe healing environment – reduce fear, pain, swelling, etc.
  • Restore local mobility
  • Restore system variability
  • Remap affected regions in the somatosensory homunculus
  • Challenge the aerobic system

Let’s take a patient I am seeing post-rotator cuff repair on his right arm. He cannot move his arm for 6 weeks.

Top priority of course is restoring range of motion, so session bulk was spent on pain-free manual therapy and passive range of motion. For home he gets elbow/wrist ROM and nerve glides.

But there is no way in hell I am doing that for 60 minutes.

In the outfit I would say it in...
In the outfit I would say it in…

There are many other things that this fellow can work on aside from basic range. Let’s address the other qualities.

Restore System Variability

In PRI-land, this gentleman was a PEC/RBC/RTMCC. We began to address this protective pattern day 1 after surgery.

Reduce sympathetic tone, reduce threat perception, promote a safe healing environment. Everybody is happy.

Since I knew he would be living in a recliner for the forseeable future, we kept things simple by blowing up a balloon.

One week later our guy came in as a LAIC/RBC with decreased left hip internal rotation, so we shifted our emphasis towards improving right apical expansion while shifting into his left hip.

With this strategy, we were able to maximize system variability within the confines of his restrictions. Gaining apical expansion on the right side was a nice way for the patient to relax the shoulder tissues while keeping the repair intact.

Remap Affected Regions

Use it or lose it reigns king in post-op land. But how can we get this gentleman to use his arm while respecting the passive-only barrier?

Here is where I love graded motor imagery the most. The shoulder’s motor pathways can still run while the repair stays intact.

So day one, we assessed our guy’s left/right discrimination using the NOI Recognise app.

He ended up blowing this stage out of the park, so once we went through all the different challenges this program allows we went straight to explicit motor imagery.

Most of my imagery is explicit...
Most of my imagery is explicit…

I asked our guy to visualize what his shoulder looked like without the brace first. Once he was able to do this, I had him imagine moving his arm in various movement planes, to progress to envisioning ADL performance with his affected extremity.

In the clinic, I would teach him push/pull movement on his left arm while he imagined performing those actions on his right.

Once he mastered imagery, we began to implement mirror box therapy.

We first started out by just watching him move his “right” arm in the mirror, which he said was very freaky.

Grab a mirror box...and perhaps some Chardonnay.
Grab a mirror box…and perhaps some Chardonnay.

Despite the freakiness, it blew him away how much this technique reduced his pain and stiffness.

Once he could do basic movements no problem, we had him work on push/pull movements using his left hand while watching his “right”arm.

His most challenging piece? Open loop arm movements. This task was a beast for his mind:

Combining GMI with working the non-affected extremity tremendously expedited re-learning basic movements on his affected extremity as we progressed later into postoperative care.

Challenge the Aerobic System

 Our guy is in his 50’s and a blue collar worker, so we aren’t getting super wild and crazy here.

Day one we emphasized nice easy walking 20-30 minutes per day to increase circulation and promote healing.

Clinic-wise, we taught him squatting, deadlifting, pressing, and rowing. To emphasize the aerobic system, we kept things at tempo pace to emphasize slow-twitch hypertrophy and aerobic development.

Tempo lifting

  • 2-4 sets of 10-12 reps
  • Pace 3 second eccentric—no pause—3 second concentric. I tell patients to say this mantra slowly – Screw…you…Zac (eccentric) Screw…you…Zac (concentric). This mantra also helps boost the immune system because patients find it funny. Two points for me!
  • 30-40 seconds rests between sets.

Later Rehab Stages

 The later rehab stages look somewhat similar to typical fare, though I do not emphasize isolated strengthening so much.

Once the active assist/active unresisted phase is allowed, we switch to that stuff. Shoulder remapping becomes a greater active process, so most of GMI is stopped. Let’s get him moving.

Fortunately he does.
Fortunately he does.

Our program also shifts toward him using his right extremity to aide in variability restoration. He has limited flexion, so I like a doorway lat stretch:

[side note: amazing that most comments I’ve heard on this vid involve my glutes and not the technique. Upon reflection of most of my life, this probably is not as surprising]

I also like him doing unresisted reaching:

We still emphasize challenging the aerobic system and the unaffected extremities, but this usually accounts for about 20% of the session at this time.

Once we can start resistance training the extremity, we keep things simple. I like push/pull movements and static/dynamic motor control exercises. So we teach our guys armbars, get-ups, carries, crawling, etc.

I don’t use a whole lot of isolated cuff work during the rehab process. The cuff doesn’t really work as a prime mover, so unless the goal is cuff hypertrophy (aka gettin’ Swolebodan Milosevic), I don’t do it.


Do some homework if you don't know who he is
Do some homework if you don’t know who he is

In the cases that I have scrapped cuff isolation exercises, I still saw manual muscle testing improve just the same. So let’s teach the cuff to be a cuff.

We finish the rehab process by making it look a lot more like fitness. By the end, the hope is to have system variability restored, local mobility in the clear, and strength up to snuff. Teach your guys and gals the basic movements and emphasize patient-specific functional activities, and you are in the clear.

Final Thoughts

 That’s where I am right now with upper quadrant post-operative care. There is a lot that these folks can be doing, and my challenge to you is to make those early stages of rehab some of the most exciting for the patient.

Now go and create!

Even if it's something like this.
Even if it’s something like this.

Course Notes: Dermoneuromodulation

What? You Mean You Have to Touch Someone???!!?!?

My gluttony for punishment continues. This time, I had the pleasure of learning Diane Jacobs’ manual therapy approach called Dermoneuromodulation (DNM).

My travels took me to Entropy Physiotherapy and Wellness in the Windy City. These folks were arguably the best course hosts I have ever had. We had lunch!!!! Both days!!!!! That is unheard of, so a big thanks to Sandy and Sarah for putting the course together.

I took DNM out of curiosity. I have been lurking around Somasimple on and off for the past couple years, and wanted to learn more about the methods championed there.

Believe it or not, I have yet to take a pure manual therapy course, DNM seemed like a great way to get my hands dirty. That darn PRI has lessened the hand representation in my somatosensory homunculus!


The representation shrinks by the day.
What my homunculus actually looks like.

One reason I haven’t taken a manual course is due to the explanatory models many classes are presenting. It seems as though few are approaching things with a neurological mindset, but I was pleased to hear Diane’s model. It is the best explanation I have heard yet.

I know that I usually list my favorite quotes at the end of the blog, but I wanted to share the best quote of the weekend right off the bat:

“I don’t know why.”

I heard this phrase so much throughout the course and it was quite refreshing. Diane made few claims about her technique, admitted who she “stole” from, and embraced the uncertainty that goes along with how her technique works.

Diane didn’t advertise her method as the end-all-be-all, and encouraged all of us to make up techniques of our own. She is just offering a non-painful sensory input that works quickly.

I wish more courses were this way.

Let us now press onward to a fantastic explanation for manual therapy.


Well done Diane, well done.
Well done Diane, well done.

Manual Therapy – An Interaction Between Two Nervous Systems

Diane started off with manual therapy’s theoretical basis. Manual therapy works predominately through your nervous system. We are made up of a brain, spinal cord, and nerves that extend from the cord.

The brain can be simply broken up into two components: the human brain and critter brain. The human brain sits our higher activity centers, and the critter brain runs the processes that keep us alive.

Under threat, the critter brain is going to do everything in its power to keep us alive, and this change can involve the protective mechanisms that go along with pain.

Aka Kevin Costner circa 1992.
Aka Kevin Costner circa 1992.

The critter brain carries out its processes through the body’s nerves. Nerves in the body tell the brain what’s going on, and the brain then tells nerves how to respond.

In order to calm our critter brain down, the clinician can communicate with the nervous system through cutaneous nerves. Our goal with our interventions is to touch the patient without hurting them. Hurt could irritate the critter brain. Instead, we want an enjoyable context for touch.

Kinda like Kevin Costner....circa 1992.
Also like Kevin Costner, circa 1992…minus the sexual implications

The patient’s role…Wait, what???!!!

Yes, the patient’s role in the manual therapy process is to guide the clinician to what feels best. It is this interactive and interoceptive model that helps reduce threat perception.  This context allows for the patient to be a little more in control of the manual therapy process.

It Rubs the Lotion on Its Skin

The skin is a pretty cool organ that can hold 20% of our blood supply and maintain temperature homeostasis. It has both peripheral (PNS) and central (CNS) nervous system influences. The PNS automatically activates to maintain skin temperature and the CNS can express itself through the skin. Those times in which you are embarrassed or scared reflect CNS status through your skin.

Due to the skin’s high innervation and vascularity, anytime we touch the skin we affect the neurovascular array. This change occurs through facilitating mechanoreceptors and physically altering cutaneous rami position.  The nervous system then evaluates this information to determine if the touch is a threat or not.

Tissue information is received through receptors. There are tons of them, but we have  a few major players:

Dermal receptors

  • Rapidly adapting mechanoreceptors – Turns on and shuts off by itself
  • Thermoreceptors – Responds to temperature change for duration of stimulus.
  • Nociceptors – Responds for stimulus duration. Can be set off by going perpendicular on skin.
  • Pacinian corpuscles – Turns on with stimulus onset and removal. Will continuously fire if stimulus fluctuates.
  • Meissner’s corpuscle – Turns on with stimulus onset and removal
  • Ruffini endings – respond to lateral skin stretch and are non-nociceptive. Slow adaptors to stimulus. Can fool the brain to alter muscle tone with skin stretch.

Epidermal receptors

  • Merkel cells – slow adapting to stimulus.


There is just a lot of stuff here.
There is just a lot of stuff here.

All the above receptors respond to stimuli and communicate information to the brain along sensory nerves. It turns out sensory nerves are incredibly long. Many of these nerves go directly from the skin to the brain. One cell! Anytime you touch the skin you are touching a direct extension of the brain.

Sensory input travels via the mechanoreceptors through the dorsal columns and spinothalamic tract in the spinal cord. Interestingly enough, the spinothalamic tract does not only carry nociception, temperature, and crude touch. Pleasant touch can also travel along this pathway.

The Dorsal columns input goes to the thalamus, which sends information to the somatosensory cortex. The spinothalamic tract goes to the thalamus first as well, followed by the somatosensory cortex, anterior cingulate cortex, and the insular cortex. These three areas are what Diane noted as “threat evaluation areas.” These areas are part of your critter brain.

Once the brain receives this information, it essentially talks to itself to determine if this information is important or not. If important, an output occurs to respond to the input.


We've all done it.

Many brain areas are a part of this conversation. The following locations contribute to the desired output in a particular way:

  • Limbic system – emotional experience.
  • Venteromedial cortex – pleasure, reward, meaning, creates positive reinforcement
  • Anterior cingulate cortex – bridge between instinct and rational; makes us worry about pain.
  • Orbitofrontal cortex – defers, suppresses, differentiates touch, interprets emotions (if you are in a bad mood, this is how your patient will know it…so be happy!).
  • Dorsolateral prefrontal cortex – Chooses behavior. This area is where therapeutic neuroscience education targets.

Explain Hyperalgesia

Pain is one possible output in response to various inputs. If pain is the desired output, changes can occur to increase sensitivity.

One possibility is hyperalgesia, in which noxious stimuli becomes extra sensitive.  Hyperalgesia can be primary or secondary.

To understand the two, we should first look at a sensory neuron.


A sensory neuron has two ends. The end that connects to the tissue is the terminal pole, and the end that travels to the spinal cord is the central pole.

Primary hyperalgesia affects the terminal pole.  Substances released by injured tissue activate nociceptors at this pole, creating the information cascade sent to the brain described previously.  We also know this as inflammation.

As the inflammatory process progresses, nociceptors send substances out to the tissues to promote enhanced firing. This change creates peripheral sensitivity, and is normal.

Secondary hyperalgesia (aka central sensitivity) has more fun at the central pole. TRPv1 is a receptor at the central pole that increases spinal cord and blood-brain barrier permeability, which allows for more nociceptive transmission to be received. Serotonin can descend from the brain to the spinal cord and sensitize these receptors as well.

Other changes that occur in secondary hyperalgesia include glial and satellite cells lowering the threshold at which nociceptors fire. The name of the game is to increase the nociceptive information coming in.

Both of these algesic mechanisms can simultaneously occur to protect a potentially compromised area. However, pain may not necessarily be experienced. Nociception involves threat detection, whereas pain involves threat perception. The two are not equal entities.

“The labeling of nociceptors as pain fibres was not an admirable simplification but an unfortunate trivialization.” ~Patrick Wall

Nerves n’ Stuff

The neurovascular bundle is connected via regional feeder vessels. These vessels ought to slide and glide with the nerves so blood supply is maintained. Movement is what keeps this system healthy.

Red - artery; Yellow - Nerve; Blue - vein; entire pic - Amazing
Red – artery; Yellow – Nerve; Blue – vein; entire pic – Amazing

These connections are vulnerable and can become sensitive to mechanical deformation.  Too much or not enough movement can decrease the nerve’s oxygen and glucose supply. A nerve will let you know if it does not get fed.

And if you listen quietly, the nerves will actually say that.
And if you listen quietly, you can hear the nerves saying that.

Deformation could translate into neuropathic pain, which is defined as pain caused by a lesion or disease in the somatosensory system. Neuropathic pain is not a diagnosis, but a descriptor.

The way one could determine if neuropathic pain contributes to one’s complaint is done quite algorithmically.  The following must be present:

  • Leading complaint must be pain.
  • Pain distribution must be neuroanatomically plausible.
  • History should suggest relevant lesion or disease.
  • Negative or positive sensory signs contained to lesioned area in question.
  • Diagnostic testing confirming lesion or disease explaining neuropathic pain.

The fewer of these criteria positive, the less chance there is of having neuropathic pain.

Theory into Therapy

Diane stressed that a therapeutic context must be established before implementing a manual intervention. This foundation occurs via a 4-step process

  1. Listen – Allows the patient to map you in their story. Your listening models how they listen to themselves.
  2. Interact  – Explain pain. This part will plant seeds to regulate future stressors.
  3. Treat – Provide non-nociceptive therapy, making sure to give the patient locus of control.
  4. Wait – Do not correct; wait for physiology to change and the desired output to emerge.


The object is to create the largest amount of descending modulation possible. We therefore mobilize the cutaneous nerves via “yesiceptive” contact and interaction.

DNM 101

Though Diane does not believe in trigger points, she does believe in sore spots that often have a different feel about them. Our goal is to change these sore spots without worsening them.

Cutaneous nerves anastomose in various ways, so everyone’s anatomy is going to be slightly different. Thus, there can be no precision or specificity with treatment. We just have to somehow move nerves in a fashion that results in reduced pain.

The assessment process was my one gripe with the course. Each technique was given clinical situations that they may work with. We then assessed with active movement followed by palpating tender spots. However, these spots can be present on many people even if pain is relieved, are unreliable to assess, and do not always contribute to the patient’s complaint. How can we say that performing this intervention is the right thing to do for this patient?

Well Diane freely admitted palpation’s unreliability, she has also been practicing long enough that she has the pattern recognition to know when techniques ought to be implemented. Novice clinicians likely lack this skill. There must be some way to provide an assessment that may lead you to performing one mobilization compared to another.

I espouse Charlie Weingroff’s principle of “can your treatment beat my tests.” Since I am a PRI enthusiast, I used those objective measures to test treatment efficacy. When implemented thoughtfully, DNM can change PRI objective measures fairly quickly and in a pain-free manner.

Zac = sold on both counts.

DNM is actually fairly simple to perform. The technique is a combination of positional release with skin stretch; fine-tuning performed throughout to maximize treatment effect.

Diane gave us many techniques that seem to work over specific areas, but really you can stretch skin in any fashion. Here are some examples of the basic techniques utilized in the course.

Longitudinal distraction – Nerves move up.

Shearing distraction – Nerves are lifted and twisted.

Unloading – Nerves move up.

Contralateral unloading (the balloon) – Go to the opposite side of the sore spot.

Rotational shearing

Circumferential unloading

 Once these techniques are implemented and symptoms change; exercise ought be to given to reinforce the changes. Though no specifics were given, Diane suggested ideas of using positioning strategies, taping, self-DNM, etc. Her objective was to give us the manual technique, then supplement with our exercise strategies of choice.


Overall I really enjoyed Diane’s course. She has given the best manual therapy theoretical explanation I have heard, and the technique is very gentle and effective.  She can beat my tests. I think that if these maneuvers are implemented into a sound assessment, you can add a very powerful sensory input to your repertoire.

Verdict: Do it. The neuroscience alone is worth the price of admission.

Manual therapy will be yours, do as you please!
Manual therapy will be yours, do as you please!

Fun Facts

  • Nerves slide and glide like a telescope.
  • A rete is a dense convoluted birds nest of cutaneous nerves over a bony prominence. These are over most every bony prominence.

Dianetics (See what I did there??)

  • “We belong to our brain more than our brain belongs to us.”
  • “We’re not treating anatomy, we’re treating physiology.”
  • “Spinal cords have not got much smarter since fish days.”
  • “You can’t trust the brain pretty well. It makes up stories.”
  • “It’s never a good idea to treat someone who is feeling better than you are.”
  • “Therapeutic neuroscience education is accurate and relevant pain information.”
  • “Pain is physiological.”
  • “You are only as old as your C-fibers.”
  • “It probably serves us well to not believe everything our brain tells us. “
  • “Pain is the story built from all inputs.”
  • “Pain descriptors are more of a way for the patient to export their feelings.”
  • “Having a license to touch people is an enormous privilege.”
  • “I can’t think of a better thing then using human brains to help other brains.”
  • “The less you do the better results you are going to get.”
  • “I have to tell you up front. I am a trigger point atheist.”
  • “Evolution is weird, and it’s not that smart actually.”
  • “When I don’t have a monitoring hand I’ll use my head to push the skin on the butt. I call it the head butt technique.”
  • “There will be asymmetric positions people adopt. It’s their comfort position.”
  • “We’re asymmetric in our behavior.”
  • “We’re not going to deal with your ovary by the way.”
  • “Those who have IT band syndrome, I don’t even know what that means.”
  • “I found this on the internet so it must be true.”
  • “The pelvic floor holds up a bunch of stuff. And you don’t know what you’ve got ‘til its gone.”
  • “Heels just love to be cranked on.”
  • “Let your brain be creative when you treat.”
  • “It’s [DNM] soft and easy so you can die comfortably at your job.”
DNM is soft and easy, no matter what your job is.
DNM is soft and easy, no matter what your job is.