Chapter 2: Specific Neurodynamics

This is a Chapter 2 summary of “Clinical Neurodynamics” by Michael Shacklock. Intro Specific neurodynamics include local effects of body movements on the nervous system. So today we will go through each body region discussing these. The Spine Here are some interesting tidbits regarding the spine and neurodynamics. When we flex the spine, the spinal canal elongates by about 9 cm. Neck flexion creates significant tension to the lumbosacral nerve roots. Neural structures slide relative to the bony interface differently depending on the location and the movement used. Flexion increases tension, but reduces compression. Extension adds compression, but reduces tension. Lateral flexion increases tension on the convex/contralateral side of the spine. This situation occurs by interface and neural tissue elongation and increased distance between the spine and periphery. Rotation closes on the ipsilateral side and opens on the contralateral side. The spinal cord tends to move towards various specific segments. These areas are termed zones of convergence, and these areas include C5-6 and L4-5.  For example, tissues above C5-6 will slide toward this zone, as will tissues below this segment. The midpoint at which tissues diverge is at T6. At this point, tissues below T6 will converge towards L4-5, and tissues above T-6 will converge to C5-6. Gravity can also play a role in neurodynamics. For example, if you perform a SLR in sidelying, the downward side usually has less mobility.  This difference occurs because the neural contents are convex on the downward side and convex on the upper side,

Read More

Chapter 12: Lower Limb

This is a Chapter 12 summary of “Clinical Neurodynamics” by Michael Shacklock. Piriformis Syndrome Piriformis syndrome often involves the fibular tract of the sciatic nerve. It has the capacity to create symptoms from the buttock down to the anterolateral leg. Testing the neurodynamics with a fibular nerve bias is essential. To attempt to isolate this problem, we must best differentiate interface from neurodynamic components. Using Cyriax principles –palpation, contraction, and lengthening –can be beneficial in this regard. Keep in mind that below 70 degrees hip flexion the piriformis produces external rotation, and above 70 degrees it is an internal rotator. When treating this problem, the goal is to change pressure between the piriformis muscle and the sciatic nerve. Level 1a – Static opener VID – KF, ER Level 1b – Dynamic opener VID – Passive ER Level 2a – Closer mobilization using passive IR. VID – Passive IR Level 2b – We finish with a passive piriformis stretch VID – Tailor stretch If there is a neurodynamic component to things, slightly modify things by using sliders. We start things off with the same opener as the interface above.  As the patient progresses, you can add proximal or distal components eventually finishing with a fibular nerve-based slump. VID – Building the slump To combine interface and neural treatments, contract-relax can be utilized. Sciatic Nerve in the Thigh Oftentimes with hamstring strains, sciatic nerve sensitivity can increase. The slump and straight leg raise tests can be utilized to help differentiate a pure

Read More

Chapter 11: Lumbar Spine

This is a Chapter 11 summary of “Clinical Neurodynamics” by Michael Shacklock. Physical Exam The slump is the big dog for assessing lumbar spine complaints. Deciphering which movements evoke the patient’s symptoms can tell you a lot about the nervous system’s dysfunction: Neck flexion increases symptoms – Cephalid sliding dysfunction. Knee extension/dorsiflexion increases symptoms – Cauded sliding dysfunction. Both neck flexion and knee extension increase symptoms – Tension dysfunction. The straight leg raise is another important test that can help determine the nervous system’s state. Treatment The treatment parallels similar tactics as previous body areas. For reduced closing dysfunctions We start level 1 with static openers, progress to dynamic openers, then work to close. For opening dysfunctions, we progress toward further opening/contralateral lateral flexion. Neural Dysfunctions We treat these mechanisms based on which dysfunction is present. For cephalid sliding dysfunctions, we approach with distal to proximal progressions; and for caudad sliding dysfunction, we work proximal to distal Tension dysfunctions are started with off-loading mvoements towards tensioners Complex Dysfunctions Sometimes you can have interface dysfunctions that simultaneously have contradictory neurodynamic dysfunction. There are several instances of the case. Reduced closing with distal sliding dysfunction – Treat by combining closing maneuvers while perform active knee extension. Reduced closing with proximal sliding dysfunction – Address by closing maneuver with neck flexion. Reduced closing with tension dysfunction – This is treated with adding closing components to tensioners Reduced opening with distal sliding dysfunction – Here we add a dynamic opener along with leg movements. Reduced

Read More

Chapter 10: Upper Limb

This is a Chapter 10 summary of “Clinical Neurodynamics” by Michael Shacklock. Thoracic Outlet Syndrome (TOS) When discussing TOS pathoneurodynamics, you must talk about breathing. The brachial plexus passes inferolaterally between the first rib and clavicle. When inhalation occurs, the plexus bowstrings over the first rib cephalidly. So breathing dysfunctions can contribute to one’s symptoms. Excessive scapular depression can also contribute because the clavicle approximates the plexus from above. Clinically, TOS often presents as anteroinferior shoulder pain, with some cases passing distally along the course of the ulnar nerve.  A resultant upper trapezius/levator scapula hyper or hypoactivity can occur that may affect the neural elements. Treating the Interface Level 1 – Static Opener with breathing Level 2 – Static opener with rib mob during exhalation; progressing with scapular depression. Level 3 – Rib depression with sliders and tensioners. Pronator Tunnel Syndrome This syndrome consists of pain in the anteromedial forearm region with or without pins and needles. Symptoms are usually provoked by repetitive activities such as squeezing, pulling through the elbow, and pronation movements. From an interface perspective, pronator syndrome deals with excessive closing. So we will use openers to treat. Level 1 – Static opener combining 60-90 degrees of elbow flexion with forearm pronation Level 2 – Dynamic opener Treating neural components depends on the present dysfunction. There are the following possible dysfunctions: Distal sliding dysfunction – symptoms decrease with contralateral cervical flexion. Proximal sliding dysfunction – Symptoms increase with contralateral cervical sidebend and finger flexion. Tension dysfunction –

Read More

Chapter 8: Method of Treatment: Systematic Progression

This is a Chapter 8 summary of “Clinical Neurodynamics” by Michael Shacklock. Let’s Treat the Interfaces The two main ways to treat interfaces involve opening and closing techniques. These treatments involve either sustained or dynamic components. We will discuss which techniques work best in terms of dysfunction classification. – Reduced Closing Dysfunction – Given static openers early in this progression, continuing to increase frequency and duration. Eventually you move to more aggressive opening techniques, while finishing with closing maneuvers. – Reduced Opening Dysfunction – Start with gentle opening techniques working to further increasing the range. – Excessive Closing and Opening Dysfunctions – Work on improving motor control and stability. How About Neural Dysfunctions The main treatments are sliders and tensioners; each can be performed as one or two-ended. Sliders ought to be applied when pain is the key symptom. Sliding may milk the nerves of inflammation and increase blood flow. These techniques could also be used to treat a specific sliding dysfunction. Sliders can be performed for 5 to 30 reps with 10 seconds to several minute breaks between sets. Increased symptoms such as heaviness, stretching, and tightness is okay, but pain should not occur afterwards. Typically sliders are performed in early stages, and in acute situations should occur away from the offending site. Tensioners are reserved for higher level tension dysfunctions. The goal is to improve nerve viscoelasticity. Some symptoms are likely to be evoked, but this occurrence is okay as long as symptoms do not last.  Tensioners are

Read More

Chapter 6: Planning the Physical Examination

This is a Chapter 6 summary of “Clinical Neurodynamics” by Michael Shacklock. Observe When assessing the patient, you must look at the following information: Symptom location, extent, quality, and behavior. Movement resistance. Range of motion. Compensatory patterns. Breathing quality. Tone of voice. Facial expression Protective muscle tone. Avoidance. When planning the exam, you can tier to what extent you ought to assess someone. Level 0: neurodynamics are contraindicated for physical or psychosocial reasons. Level 1: Limited exam where symptoms are minimally provoked. Full neurodynamic tests are not performed, and are tested separately from musculoskeletal structures. The neurodynamic tests are performed with relieving-based structural differentiation. Level 1 is indicated when… Symptoms are easily provoked and take a long time to settle after movement. Severe or latent pain is present. Potential pathology. Neurological deficit. Progressive worsening prior to exam. Level 2: Standard examination in which neurodynamics, interfaces, and innervated tissue are tested separately. Standard neurodynamic sequences are used and symptoms can more readily be brought on. Level 2 is indicated when… Less severe, latent, or easily provoked symptoms. Absent/minor neurological symptoms. Stable problem that is not rapidly deteriorating. Level 3: It’s gettin’ real. Here we see greater force localization and sequences that start at the problem. Sensitizers are often used as well. Level 3 is indicated when… Level 2 exam is normal or provides insufficient information. Symptoms are not severe or easily provoked. Problem is stable. No evidence of pathology. There are four examination types here: 3a) sensitizers are added. 3b) Begin

Read More

Chapter 9: Cervical Spine

This is a Chapter 9 summary of “Clinical Neurodynamics” by Michael Shacklock. Physical Exam The key tests you will want to perform include: Slump test. MNT 1. You can tier your testing based on one’s dysfunctions, such as opening or closing, as well as using sensitizers for less severe problems. Reduced Closing Dysfunction Level 1a – Static opener to increase space and decrease pressure in the intervertebral foramen. In the picture below, we would open the right side by combining flexion, contralateral sidebend, and contralateral rotation. Level 1b to 2b Reduced Opening Dysfunctions For these impairments, they are treated just the same as closing dysfunctions. The major difference is rationale. In closing dysfunction, the goal is to reduce stress on the nervous system. With opening dysfunctions, however, we are trying to improve the opening pattern. Static openers will generally not be used because these treatments could potentially provoke symptoms. Neural Dysfunction The gentlest technique is the two-ended slider, in which an ipsilateral lateral glide and elbow extension are performed. For tension dysfunctions, we go through the following progression:

Read More

Chapter 4: Diagnosis of Specific Dysfunctions

This is a Chapter 4 summary of “Clinical Neurodynamics” by Michael Shacklock. Mechanical Interface Dysfunction In early stages of closing dysfunctions, symptoms present as aches and pains. This presentation is due to the musculoskeletal tissues being more affected than the neural tissue. As severity increases, neurological symptoms such as pins and needles, tingling, and burning are more likely to occur. The severest end of the spectrum includes numbness and weakness; indicating further compromise to the neurovascular structures. Interface dysfunctions behave with changes in posture and movement. Oftentimes cardinal signs of inflammation can be present, along with night pain/morning stiffness. Typically you will see a painful arc throughout movement. During the physical exam, patients will show an inability to move in opening or closing directions. You can also find altered pain production, soft tissue thickening, or hypermobility/instability. Neurological changes will usually be present only in severe interface dysfunction. There are four basic types of interface dysfunctions 1)      Reduced closing 2)      Excessive closing 3)      Reduced opening 4)      Excessive opening In reduced closing dysfunction, closing movements such as squeezing or cervical extension provoke symptoms. Assessment may show a protective deformity developing in the opening direction so pressure is reduced on the nervous system. Symptoms will often not be reproduced unless neurodynamic testing is combined with interface testing. Excessive closing is when, well, interfaces are closing too much. An example of this dysfunction is excessive lumbar lordosis present with low back pain that increases with standing, walking, and running. A patient’s history will often show

Read More

Chapter 3: General Neuropathodynamics

This is a Chapter 3 summary of “Clinical Neurodynamics” by Michael Shacklock. What it is General neuropathodynamics are abnormalities consistent throughout the nervous system, with specific referring to local abnormalities. These changes may lead to a neurogenic pain experience, in which pain is initiated by a primary lesion, dysfunction, or transitory perturbation in the nervous system. This definition means that dysfunction in the nervous system, it’s surrounding tissues, and innervated tissues can all be related to neurogenic pain. Definitions of Clinical Problems When discussing dysfunction, there are several descriptors: 1)      Optimal/desirable: When the neuromusculoskeletal system behaves well and does not create symptoms in situations of high stress. 2)      Suboptimal: Imperfect neuromusculoskeletal behavior which results in potential symptom increasing if an adequate trigger occurs. 3)      Normal: Function of neuromusculoskeletal system is within normal values. 4)      Abnormal: Neuromusculoskeletal system is outside of the normal range. 5)      Relevant: When pathodynamics are linked to the clinical problem. 6)      Irrelevant: When pathodynamics are not linked to the clinical problem. You will oftentimes have multiple of these components in a clinical situation. Mechanical Interface Dysfunction These dysfunctions deal with abnormal or undesirable forces on the nervous system. There are two main categories with their own subcategories. 1)      Closing dysfunctions – Altered closing mechanisms of the movement complex. Can be reduced (protective response) or excessive (hypermobility/instability). 2)      Opening dysfunctions – Altered opening mechanisms of the movement complex. Can be reduced which creates impaired pressure reduction, or excessive leading to tissue traction. Pathoanatomical Dysfunction This type of dysfunction is

Read More

Course Notes: Mobilisation of the Nervous System

I Have an Addiction It seems the more and more that I read the more and more and read the more and more addicted I become to appreciating the nervous system and all its glory. To satisfy this addiction, I took Mobilisation of the Nervous System with my good friend Bob Johnson of the NOI Group. This was the second time I have taken this course in a year’s span and got so much more value this time around. I think the reason for this enrichment has been the fact that I have taken many of their courses prior and that I prepared by reading all the NOI Group’s books. A course is meant to clarify and expand on what you have already read. So if you are not reading the coursework prior, you are not maximizing your learning experience. What made this course so much more meaningful was being surrounded by a group of like-minded and intelligent individuals. As many of you know, I learned much of my training through Bill Hartman. Myself, Bill, the brilliant Eric Oetter and Matt Nickerson, my good friend Scott, and my current intern Stephanie, all attended. When you surround yourself with folks smarter than you, the course understanding becomes much greater. This course was so much more with the above individuals, so thank you. Try to attend courses with like-minded folks. Here are the highlights of what I learned. If you would like a more in-depth explanation of these concepts, check out my

Read More

The Sensitive Nervous System Chapter XIII: Research and Neurodynamics: Is Neurodynamics Worthy of Scientific Merit?

This is a summary of Chapter XIII of “The Sensitive Nervous System” by David Butler. Intro Research has demonstrated that often evidenced-based medicine is low on the list for why clinicians choose a particular treatment. From an ethical standpoint, it is important to consider evidence. This chapter is very short so I will just provide the highlights that I got from it. Appraising a New Theory or Approach There are six criteria that a new theory should be evaluated by: 1)      Support from anatomical and physiological evidence. 2)      Designed for a specific population. 3)      Studies from peer-reviewed journals. 4)      Include a well-designed randomized controlled trial or single experiment. 5)      Present potential side effects. 6)      Proponents discuss and are open to limitations. Agreement Here are some definitions of different ways research measures agreement. –          Cohen’s Kappa: Measures nominal data reliability. >0.75 is excellent agreement. 0.40-0.75 is fair to good. <0.40 is poor. –          Pearson product movement correlation: Measures interval/ratio data. –          ICC: Measures continuous data. The closer to 1, the better. Validity There are also many different validity types defined throughout this chapter. The first two are proven through logic and have the least evidence support. –          Construct Validity: Valid relative to a theoretical foundation. –          Content Validity: Can I use this measure to make an inference? The next two are higher up on the evidence support hierarchy. –          Convergent Validity: The test shows a correlation between two variables. –          Discriminant Validity: The test shows a low correlation between two variables.

Read More

The Sensitive Nervous System Chapter XV: Clinical Aspects of Neurodynamics

This is a summary of chapter XV of “The Sensitive Nervous System” by David Butler. Intro In this chapter we discuss many specific neurodynamic pathologies and implementing the nervous system into treatment approach. Conservative Nervous System Decompression Here is a general step-by-step approach to decreasing threat throughout the nervous system. 1)      Decrease tissue sensitivity by removing relevant stimuli and decreasing CNS threshold. 2)      Improve container tissue health. 3)      Improve the nerve tract’s ability to absorb traction forces. 4)      Assess and improve the nerve to container relationship. 5)      Assess/modify any adverse ergonomic or environmental factors. Carpal Tunnel Syndrome Tests to perform. ULNT1 & reverse. ULNT2 (median) & reverse. Compression (can add ULNT). Phalens and reverse Phalens. Phalens + ULNT. Treatment There are several options to treat carpal tunnel syndrome. Mobilizing not only the median nerve, but radial and ulnar is beneficial because the nerves are closely connected. Movement is critical because nerve inflammation and swelling does not leave the carpal tunnel easily. This problem is because there are minimal lymphatic channels in the tunnel. Nerve Root Complex Nerve root issues often have corresponding postural adaptations. Cervical – forward head posture. Lumbar – Flat lumbar spine with knees flexed, positioned toward the injured sign. In acute instance, it may be okay to let the patient rest in these antalgic postures until AIGS settle. Other presentations indicative of nerve root complex pathology include numbness/tingling down the extremities. Other possibilities include coldness, shooting, tiredness. Pain rarely goes into the extremities. Double Crush Double crush

Read More