This is a chapter 2.1 summary of “Recognizing and Treating Breathing Disorders” by Leon Chaitow. You’re Writing About DNS???!!??! Yes, I am. Pavel Kolar and crew actually contributed to quite a few chapters in this edition, and this one here was overall very well written. Believe it or not, it even had quite a few citations! Why they don’t cite many references in their classes is beyond me, but that’s another soapbox for another day. Onward to a rock-solid chapter. Developmental Diaphragm En utero, the diaphragm’s origin begins in the cervical region, which could possibly have been an extension of the rectus abdominis muscle. As development progresses, the diaphragm caudally descends and tilts forward. When the child is between 4-6 months old, the diaphragm reaches its final position. Throughout this period, the diaphragm initially is used for respiratory function only. As we progress through the neonatal period (28 days), we see the diaphragm progress postural and sphincter function. The diaphragm is integral for developing requisite stability to move. Achieving movement involves co-activation of the diaphragm, abdominal, back, and pelvic muscles. This connectivity assimilates breathing, posture, and movement. If this system develops properly, we see the highest potential for motor control. The largest developmental changes in this system occur at 3 months. Here we see the cervical and thoracic spine straighten and costal breathing initiate. 4.5 months show extremity function differentiation, indicating a stable axial skeleton to which movement may occur. Further progression occurs at 6 months. Here costal breathing is
Read MoreTag: pavel kolar
DNS B Course Notes
Whew, I recently finished (and still trying to process) the B level DNS course from the folks at The Prague School. Instructors were Martina Jeszkova and Dr. David Jeurhing. There were a lot of things covered during this 4 day course and I definitely learned a few things. Here are the highlights. Developmental Principles The focal point of DNS is the concept of joint centration, a static and dynamic maximal joint surface approximation. When joint surfaces achieve optimal bony congruency, the muscles surrounding the joint achieve optimal activation and highest mechanical advantage. The reverse is also true. If muscles coactivate properly, then joint centration occurs. Conversely, if optimal joint centration is not achieved then muscle imbalances occur. The reverse is also true. This change becomes very problematic, as decentration at one joint effects centration at all the other joints. This may lead to decreased performance at best and at worst increased wear on joint surfaces. Take lower crossed syndrome (or open scissors if you are a DNS fan) for example. Let’s say we had a problem with our lower back. In order to cope with this trouble, we increase lumbar lordosis and decentrate the lumbar spine. See how it affects the surrounding structures. The pelvis anteriorly tilts, which affects length tension relationships to glutes, hamstrings, and hip flexors. Thoracic kyphosis increases as well, affecting the shoulder girdle and cervical muscles. Basically, play with one body region or joint position and see how it affects the others, and you can develop
Read More