This is a chapter 8 summary of the book “Movement” by Gray Cook. What to Look For The SFMA breakouts are utilized to determine if one’s movement deficiencies have a mobility or stability origin. There are further possibilities in each of these categories. It Could Be a Mobility Problem There are two subsets of mobility problems that include tissue extensibility dysfunction (TED) and joint mobility dysfunction (JMD). From here, we can break it down even further in each subset. Here are some potential TEDs Active/passive muscle insufficiency Limited neurodynamics (they said neural tension; come on Gray!) Fascial tension Muscle shortening Hypertrophy Trigger points Scarring/fibrosis And here are some potential JMDs Osteoarthritis/arthrosis Single-joint muscle spasm/guarding Fusion Subluxation Adhesive capsulitis Dislocation It could be a Stability Problem These issues are also known as stability or motor control dysfunction (SMCD). Most conventional therapies would treat these complaints by strengthening the stabilizers, but this is problematic. When something works reflexively, how can we train something volitionally and expect changes? To train these muscles we must focus on proprioceptive and timing-based training. There are several examples of SMCD problems. Motor control dysfunction. High threshold strategy. Local muscle dysfunction/asymmetry. Mechanical breathing dysfunction. Prime mover or global muscle compensation behavior or asymmetry. Poor static stability, alignment, postural control, asymmetry, and structural integrity. Poor dynamic stability, alignment, postural control, asymmetry, and structural integrity. Relatedness Mobility and stability can influence one another. If I were to lose mobility at one segment, motor control can be distorted at nearby segments.
Read MoreTag: functional
Movement Chapter 7: SFMA Introduction and Top-Tier Tests
This is a chapter 7 summary of the book “Movement” by Gray Cook. Intro The SFMA’s goal is to assess functional capabilities. This system is based on Cyriax differentiation and grading principles. Instead of describing things as strong, weak, painful, or painless; the following descriptors are utilized: Functional nonpainful (FN): Unlimited movement and able to complete a breath cycle at end-range. Called the dead end. Functional painful (FP): Called the marker, reassessed. Dysfunctional nonpainful (DN): Limited, restricted, impaired mobility, stability, or symmetry. Labored breathing with movement also implicates this choice. Called the pathway, where treatment occurs. Dysfunctional painful (DP): Called the logical beehive because we do not know if pain is causing poor movement or vice versa. It is an unreliable place to work unless acute situations. SFMA corrective and manual therapy lie in treating the FP’s and DN’s. The order at which things are treated also matters, so the order listed below for the top tier tests is also typically where treatments should hierarchically begin. Cervical spine patterns (CSP) Upper extremity patterns (UEP) Multi-segmental flexion (MSF) Multi-segmental extension (MSE) Multi-segmental rotation (MSR) Single leg stance (SLS) Overhead deep squat (ODS) We then operate the SFMA in the following fashion:
Read MoreMovement Chapter 6: Functional Movement Screen Descriptions
This is a chapter 6 summary of the book “Movement” by Gray Cook. Screening Keys The FMS is not considered a training or competition tool; it simply ranks movements. Here are the keys to a successful screen. First off, know the following bony landmarks Tibial tuberosity ASIS Lateral and medial malleoli Most distal wrist crease Knee joint line 3 repetitions are performed for each movement, and it is important to stand far away so the whole movement can be seen. When testing both sides, take the lowest score if an asymmetry is present. Here are the movements (videos courtesy of Smart Group Training). The Deep Squat Purpose: Full-body coordinated mobility and stability; linking the hips and the shoulders. Here is how it is done. Hurdle Step Purpose: Evaluate stepping and stride mechanics. Here is how it is done. Inline Lunge Purpose: Test deceleration and left/right function utilizing contralateral upper extremity patterns and ipsilateral lower extremity patterns. Here is how it is done. Shoulder Mobility Purpose: Evaluate scapulothoracic rhythm, thoracic spine and rib mobility. Here is how it is done. ASLR Purpose: Tests hip flexion, hip extension, and core function. Here is how it is done. Trunk Stability Pushup Purpose: Tests reflexive core stability. Here is how it is done. Rotary Stability Purpose: Check multi-planar pelvic, core, and shoulder girdle stability. Also looks at reflexive stability and transverse plane weight shifting. Here is how it is done. FMS Conclusions The FMS is designed to give a corrective pathway that may involve
Read MoreMovement Chapter 5: Functional Movement Systems and Movement Patterns
This is a chapter 5 summary of the book “Movement” by Gray Cook. In this chapter, Gray outlines the interconnectedness of the tests and outlines all of the different breakouts. The movements will be demonstrated in later chapters. FMS There are seven movements with different clearing examinations. 1) Deep squat 2) Hurdle step 3) Inline lunge 4) Shoulder mobility 5) Active straight leg raise (ASLR) 6) Trunk stability pushup 7) Rotary stability. The first three movements are often called the big 3, as they are functional movements that check core stability in three essential foot positions. The remaining four are considered fundamental movement patterns. Often these patterns are attacked before the first three. These screens can also be broken up into those that check symmetry and asymmetry: Symmetrical patterns Deep Squat Trunk stability pushup. Asymmetrical patterns Hurdle step Inline lunge Shoulder mobility ASLR Rotary stability. The way we work the FMS is by first attacking asymmetrical patterns before straight patterns, and primitive patterns before functional patterns. The FMS is scored on a four point ordinal scale with the following scoring criteria: 3 – Complete pattern 2 – Complete pattern with compensations/deviations 1 – Incomplete pattern 0 – Painful pattern. There are also three clearing tests that are either positive or negative for pain. 1) Impingement clearing test (shoulder mobility) 2) Prone pressup (trunk mobility) 3) Posterior rocking (rotary stability) The FMS works by creating several filters to catch for compensations and problems. 1) Pain – Signal to a problem. 2)
Read MoreMovement Chapter 4: Movement Screening
This is a chapter 4 summary of the book “Movement” by Gray Cook. What Be the Goal? Movement screening’s goal is to manage risk by finding limitations and asymmetries via two strategies; 1) Movement-pattern problems: Decreased mobility and stability in basic movements. 2) Athletic-performance problems: Decreased fitness. The FMS razor, akin to Occam’s razor, is to determine a minimum movement pattern quality before movement quantity and capacity are targeted. Movement patterns are lost by the following mechanisms: Muscular imbalance. Habitual asymmetrical movements. Improper training methods. Incomplete recovery from injury. Ideally, the FMS would be part of the basic tests performed when one is looking to participate in sport. Prior to any athletic engagement, a medical exam is performed to clear someone to participate. This exam is often followed by performance and skills tests. Gray feels that the FMS belongs between these two tests, as there is an obvious gap from basic medical screening to high performance. It is not to say that we must only train movement patterns. Rather, all the above qualities can be trained in parallel. The real goal is to manage minimums at each level and make sure improving one does not sacrifice quality at the others.
Read MoreMovement Chapter 2: Anatomical Science Versus Functional Science
This is a chapter 2 summary of the book “Movement” by Gray Cook. Funky Muscles There are anatomically two basic types of muscles; shunt and spurt. Shunt muscles compress and produce structural integrity because the distal attachment is far from the moving joint. Spurt muscles produce movement because the distal attachment is close to the axis of rotation. While these two muscle types are present, they can vary depending on the function performed. For example, if we perform a movement in the closed chain, the spurt and shunt roles become reversed. Focusing on a single muscle group causes us to lack understanding of the supporting matrix behind superficial muscle action. Muscle function depends on body position and joint in action. We can see this point illustrated in Lombard’s paradox, which involves the coactivation of hamstrings and quadriceps when performing a sit to stand. These muscles are antagonistic to one another at their respective joints, yet movement is produced. The resultant effect is the quads and hamstrings becoming global stabilizers. Muscle activity is task specific, therefore Gray purports four types of muscles: 1) Global Stabilizers: Multi-joint muscles contracting to produce stability and static proprioceptive feedback. 2) Global Movers: Multi-joint muscles that produce movement and dynamic proprioceptive feedback. 3) Local Stabilizers: Deep segmental muscles (1-3 segments) that produce stability and static proprioceptive feedback. 4) Local Movers: Single joint muscle that produce movement and dynamic proprioception. These different muscle types require different training modalities. The example given is stabilizer muscles. These muscles cannot
Read MoreMovement Chapter 1: Introduction to Screening and Assessment
This is a chapter 1 summary of the book “Movement” by Gray Cook. Intro This chapter’s central point, and for that matter the whole book, is that movement needs to standardized just like all other therapeutic and performance measures. Movement is fundamental to who we are. Despite movement being at our center, we continually classify patients and clients by body region. Unfortunately through this reductionism, much is lost. We cannot measure parts and expect that to give us an adequate picture of the whole. Screening Before we begin training, it is advocated that movement be screened to facilitate an optimal training environment. The screen will determine movement as one of the following three areas: 1) Acceptable 2) Unacceptable 3) Painful Movement is screened for many reasons. Gray often states that the number one risk factor for injury is previous injury. A movement screen helps find potential risk factors for re-injury. Moreover, if movement is dysfunctional, then all things built on that dysfunction could predispose one to more risk. The screen also helps separate pain from movement dysfunction. It is widely known that when one undergoes a pain experience, motor control is altered. Because motor control is altered, we may not get the desired training effect secondary to pain. Pain screening gives us an avenue for further assessment a la the Selective Functional Movement Assessment (SFMA). Movement screening is the first step away from quantitative analysis to movement quality; from reductionism to holism. Once we have a basic movement map we
Read More