This is a Chapter 2 summary of “Clinical Neurodynamics” by Michael Shacklock. Intro Specific neurodynamics include local effects of body movements on the nervous system. So today we will go through each body region discussing these. The Spine Here are some interesting tidbits regarding the spine and neurodynamics. When we flex the spine, the spinal canal elongates by about 9 cm. Neck flexion creates significant tension to the lumbosacral nerve roots. Neural structures slide relative to the bony interface differently depending on the location and the movement used. Flexion increases tension, but reduces compression. Extension adds compression, but reduces tension. Lateral flexion increases tension on the convex/contralateral side of the spine. This situation occurs by interface and neural tissue elongation and increased distance between the spine and periphery. Rotation closes on the ipsilateral side and opens on the contralateral side. The spinal cord tends to move towards various specific segments. These areas are termed zones of convergence, and these areas include C5-6 and L4-5. For example, tissues above C5-6 will slide toward this zone, as will tissues below this segment. The midpoint at which tissues diverge is at T6. At this point, tissues below T6 will converge towards L4-5, and tissues above T-6 will converge to C5-6. Gravity can also play a role in neurodynamics. For example, if you perform a SLR in sidelying, the downward side usually has less mobility. This difference occurs because the neural contents are convex on the downward side and convex on the upper side,
Read MoreTag: The Sensitive Nervous System
The Sensitive Nervous System Chapter XV: Clinical Aspects of Neurodynamics
This is a summary of chapter XV of “The Sensitive Nervous System” by David Butler. Intro In this chapter we discuss many specific neurodynamic pathologies and implementing the nervous system into treatment approach. Conservative Nervous System Decompression Here is a general step-by-step approach to decreasing threat throughout the nervous system. 1) Decrease tissue sensitivity by removing relevant stimuli and decreasing CNS threshold. 2) Improve container tissue health. 3) Improve the nerve tract’s ability to absorb traction forces. 4) Assess and improve the nerve to container relationship. 5) Assess/modify any adverse ergonomic or environmental factors. Carpal Tunnel Syndrome Tests to perform. ULNT1 & reverse. ULNT2 (median) & reverse. Compression (can add ULNT). Phalens and reverse Phalens. Phalens + ULNT. Treatment There are several options to treat carpal tunnel syndrome. Mobilizing not only the median nerve, but radial and ulnar is beneficial because the nerves are closely connected. Movement is critical because nerve inflammation and swelling does not leave the carpal tunnel easily. This problem is because there are minimal lymphatic channels in the tunnel. Nerve Root Complex Nerve root issues often have corresponding postural adaptations. Cervical – forward head posture. Lumbar – Flat lumbar spine with knees flexed, positioned toward the injured sign. In acute instance, it may be okay to let the patient rest in these antalgic postures until AIGS settle. Other presentations indicative of nerve root complex pathology include numbness/tingling down the extremities. Other possibilities include coldness, shooting, tiredness. Pain rarely goes into the extremities. Double Crush Double crush
Read MoreThe Sensitive Nervous System Chapter XIV: Management Strategies: Integration of Neurodynamics
This is a summary of chapter XIV of “The Sensitive Nervous System” by David Butler. The Big Picture Evidence Based Approach Here is the step by step patient care process that Butler advocates. 1) Identify red flags and manage accordingly. 2) Educate on the whole problem to include tissue health status, the nervous system’s role, and test results. 3) Provide prognosis and make realistic goals. 4) Promote self-care, control, and motivation. 5) Decrease unnecessary fear and manage catastrophization. 6) Get patients moving as early as possible. 7) Help patients identify success and sense of mastery of a problem. 8) Perform a skilled exam. 9) Acknowledge that biopsychosocial inputs combine with the nervous system to produce pain and disability. 10) Use any measures possible to reduce pain. 11) Minimize number of treatments and contacts with all medical personnel. 12) Chronic pain may need a multidisciplinary approach. 13) Manage physical function and dysfunction. 14) Assess and assist in improving general fitness. 15) Assess how injury affects creative outlets and assist the patient with regaining creativity and discovering new creative outlets. Incorporating Neurodynamics There are several ways to incorporate neurodynamics into the patient’s plan of care which will be outlined below. Reassessment. Explanation. Passive mobilization. Active mobilization. Posture and ergonomics. Reassessment There are many evaluation protocols that warrant constant reassessment after applying an intervention. Be it a comparable sign or audit, neurodynamic tests can be utilized well within these systems. A word of caution with instant reassessment, as quick changes could merely be
Read MoreThe Sensitive Nervous System Chapter XIII: Research and Neurodynamics: Is Neurodynamics Worthy of Scientific Merit?
This is a summary of Chapter XIII of “The Sensitive Nervous System” by David Butler. Intro Research has demonstrated that often evidenced-based medicine is low on the list for why clinicians choose a particular treatment. From an ethical standpoint, it is important to consider evidence. This chapter is very short so I will just provide the highlights that I got from it. Appraising a New Theory or Approach There are six criteria that a new theory should be evaluated by: 1) Support from anatomical and physiological evidence. 2) Designed for a specific population. 3) Studies from peer-reviewed journals. 4) Include a well-designed randomized controlled trial or single experiment. 5) Present potential side effects. 6) Proponents discuss and are open to limitations. Agreement Here are some definitions of different ways research measures agreement. – Cohen’s Kappa: Measures nominal data reliability. >0.75 is excellent agreement. 0.40-0.75 is fair to good. <0.40 is poor. – Pearson product movement correlation: Measures interval/ratio data. – ICC: Measures continuous data. The closer to 1, the better. Validity There are also many different validity types defined throughout this chapter. The first two are proven through logic and have the least evidence support. – Construct Validity: Valid relative to a theoretical foundation. – Content Validity: Can I use this measure to make an inference? The next two are higher up on the evidence support hierarchy. – Convergent Validity: The test shows a correlation between two variables. – Discriminant Validity: The test shows a low correlation between two variables.
Read MoreThe Sensitive Nervous System Chapter XII: Upper Limb Neurodynamic Tests
This is a summary of Chapter XII of “The Sensitive Nervous System” by David Butler. Intro Today we will take a look at assessing upper limb neurodynamic tests (ULNT). These assessments used to be called tension tests, but that terminology is now a defunct mechanical description. We now describe these as neurodynamic tests to better appreciate the neurophysiologic aspects of mechanosensitivity and upper limb homunculi stability. These tests are numbered based on the movement sensitizer, which are as follows: 1 – Shoulder abduction. 2 – Shoulder depression. 3 – Elbow flexion. ULNT1: Median Nerve Here is the quick test first. Here is how to do the manual test. A quick heads up regarding head motions. Sidebending away increases symptoms in 90% of people. Sidebending toward decreases symptoms in 70% of people. ULNT2: Median Nerve Here is the manual test ULNT2: Radial Nerve Here is the active test. And the manual test. ULNT3: Ulnar Nerve Here is the active test And the manual test. Musculocutaneous Nerve Here is the active test And the passive test. Axillary Nerve Here is the passive test. Suprascapular Nerve Here is the test. Final Words Have some fun with these tests, and be mindful that you are not too aggressive. Thanks to Scott and Sarah for your videotaping help. You guys rock.
Read MoreThe Sensitive Nervous System Chapter XI: Neurodynamic Testing for the Spine and Lower Limb
This is a summary of Chapter XI of “The Sensitive Nervous System” by David Butler. Intro For today’s chapter, I have decided that the best way to learn these tests is to show you. I will write in any pertinent details you need for a good test performance. The Straight Leg Raise (SLR) SLR hacks. Add sensitizers (dorsiflexion, plantarflexion, etc) to determine nervous system involvement. Add cervical flexion or visual input to enhance responses. Be mindful of symptoms before and after pain responses. If this test is positive post-operation, it will likely be inflammatory in nature. You can preload the system further with cervical flexion or sidebending the trunk away from the test side. Here are some other ways to perform the SLR with sensitizers first. (I apologize for the way the camera shot in advance). For tibial nerve-bias. For fibular nerve bias. For sural nerve bias. Passive Neck Flexion (PNF) Here is how to perform the test. PNF Hacks. Add SLR to further bias the test. Be mindful of Lhermitte’s sign, which is an electric shock down the arms or spine. This is a must-refer sign as there is potential spinal cord damage. Slump Test Here is how to perform the slump. Slump Knee Bend In the book itself, Butler uses the prone knee bend as his base test. However, NOI does not teach this motion as much and now favors the slump knee bend. This movement allows for much more differentiation to be had. And the saphenous nerve
Read MoreThe Sensitive Nervous System Chapter X: Neurodynamic Tests in the Clinic
This is a summary of Chapter X of “The Sensitive Nervous System” by David Butler. The Tests When assessing neurodynamics, there is a general system that is used including the following tests: Passive neck flexion (PNF). Straight leg raise (SLR). Prone knee bend (PKB). Slump. 4 different upper limb neurodynamic tests (ULNT). I will demonstrate these tests for you in later chapters. Many clinicians when discussing the lower extremity-biased tests deem that maybe only one or two of the tests need to be performed, however this assertion is erroneous. Slump, SLR, and PNF all need to be tested as a cluster. The reason being is that the clinical responses may often differ. This difference is especially noticeable when comparing the SLR and the slump. These two are not equal tests for the following reasons: Components are performed in a different order. Spine position is different. Patients may be more familiar with the SLR, therefore give more familiar responses. The patient is in control during the slump, not in the SLR. The slump is more provocative. Rules of Thumb When testing neurodynamics, here are the following guidelines: 1) Active before passive. 2) Differentiate structures – add/subtract other movements to see if symptoms can change. 3) Document the test order. Positive Test The positive testing here is a little dated based on what Butler’s group and the research says as of right now. Based on what I have learned from Adriaan Louw, having any of the following is what constitutes a positive
Read MoreThe Sensitive Nervous System Chapter IX: Manual Assessment of Nerve Conduction
This is a summary of Chapter IX of “The Sensitive Nervous System” by David Butler. The Value The neurological exam is an excellent way to sample the patient’s nervous system. When looking at the neurological system, we must realize that testing does not reflect a tissue injury alone. It demonstrates the neurological pathway’s response. There is no such thing as a focal lesion in the nervous system. We must also understand that the exam is a very small component of a further comprehensive assessment, providing moderate diagnostic value at best. Sensitivity for a screen like this is inherently poor, meaning this examination cannot rule out nervous system pathology or involvement. Sensory Examination If we are going to walk the neurological walk, we first need to talk the neurological talk. Here are some important definitions. Allodynia: Pain from a non-painful stimulus. Hyperalgesia: Increased response to a painful stimulus. Analgesia: No pain from a painful stimulus. Hyperpathia: Abnormal pain reaction to a repetitive stimulus. Hypoalgesia: Decreased response to a painful stimulus. Hypoesthesia: Decreased sensitivity to a stimulus. Hyperesthesia: Increased sensitivity to a stimulus. Dysesthesia: Unpleasant, but not painful response to a stimulus. First, we will take a look at dermatomes. Now depending on who you talk to, dermatomal levels will be different. Moreover, many people have anatomically variant dermatomes, and often times these can fluctuate throughout the day. There are however, some signature zones that are fairly consistent throughout the literature. There are several different sensations that need to be tested. Make
Read MoreThe Sensitive Nervous System Chapter VIII: Palpation and Orientation of Peripheral Nervous System
This is a summary of Chapter VIII of “The Sensitive Nervous System” by David Butler. Intro Palpation is a major component to therapeutic touch, and gives us a way to build rapport and interact with our patients. When palpating the nervous system, it is important to palpate in sensitive positions so the nervous system is placed on load. Here are some general nerve anatomical rules. Where a nerve has fewer fascicles and less connective tissue, palpation will be more sensitive (ulnar nerve). Where there is a lot of connective tissue, there will be a more localized and less “nervy” response. Where there is increased sensitivity does not mean there is damage locally. Damage could have occurred more proximally (that whole nerves fire in both directions thing). You must also be mindful that anatomical variations are common, especially if symptoms seem anatomically weird. Here are some of the more common ones: Martin-Gruber anastomosis: Median and ulnar communicate distally. Rieche-Cannieu anastomosis: Deep branch of ulnar and recurrent branch of median nerve. Absent musculocutaneous nerve. Palpation 101 Here are some basic nervous system palpation guidelines. Nerves feel hard and slippery. Palpate with your finger tip or thumb, and follow it proximally or distally. Use sustained pressure up to 30 seconds. Twang if easily accessible. If using a Tinel’s, tap the nerve 4-6 times. Spinal Nerve Palpation Here are the craniocervical nerves. The Trunk Upper Extremity Nerve Palpation Brachial plexus The median nerve The Ulnar nerve The Radial Nerve The Musculocutaneous Nerve Lower Extremity
Read MoreThe Sensitive Nervous System Chapter VII: Assessment with a Place for the Nervous System
This is a summary of Chapter VII of “The Sensitive Nervous System” by David Butler. Education When it comes to patient education, there are four things that every patient wants to know: 1) What is wrong with me? 2) How long will it take to get better? 3) What can I do for it? 4) What can you (the clinician) do for it? When we do educate, we must not forget that pain is a biopsychosocial phenomenon and multifactorial. The onion skin model below provides a good relationship analogy for this. The first goal addressed in education is making the patient understand pain. Patients must realize that pain is the defender, not the offender. It is our body’s way to perceive a threat. Therefore, we must quell this fear before focusing on function. Here are some suggested ways to describe pain in non-threatening ways. Back trouble. Neck discomfort. Twinges. Feelings. When obtaining pain information from our patients, this is something that we do not have to measure. Instead, it is important to look at variables associated with pain, namely. 1) Geography & nature, aggravating/relieving factors, links. 2) Mechanism of injury. 3) Explore how patient’s classify their symptoms (e.g. my joints are worn out), and ask why they think the symptoms still persist. 4) Consequences of the pain. 5) Coping types. 6) How the patient relates to pain (do they get angry or play the blame game). When determining treatment course, instead of focusing on the structure at fault, look at
Read MoreThe Sensitive Nervous System Chapter VI: Clinicians and Their Decisions
This is a summary of Chapter VI of “The Sensitive Nervous System” by David Butler. Intro All approaches (Maitland, Mckenzie, Mulligan) have myths. The common bond between them all is pain. Today we will look at building a clinical framework with pain as the cornerstone. Evidence-Based Medicine (EBM) EBM is defined as a conscientious, explicit, and judicious use of current best evidence in making patient care decisions. This concept is not merely reading researches articles, but it combines scientific evidence and clinical expertise. You have to know when to apply what. For manual therapists everywhere, this creates issues and unease. 1) Decision making moves toward an external body. 2) Evidence suggests manual therapy improvements are more psychosocial than physical. 3) A disconnect between researcher and clinician. The researcher thinks: “What does this work contribute to the literature?” The clinician thinks: “What does this work do for my patient?” The movement towards outcome-based therapy per EBM is also problematic for several reasons. 1) Clinicians begin to think statistical analysis becomes greater than any other form of knowledge rather than complimentary. 2) Research doesn’t take into account the inherent uncertainty and subjectivity in a clinical encounter. 3) Good evidence can lead to bad practice if applied in uncaring and unappealing environments. 4) Outcomes may be coming out too quickly, leading to research development stopping in certain areas. Butler’s thoughts are summed up very nicely when he states it would be a sad day if meta-analyses have the final say instead of exposing
Read MoreThe Sensitive Nervous System Chapter V: Neurodynamics
This is a summary of Chapter V of “The Sensitive Nervous System” by David Butler. Intro Neurodynamics is the study and relationship of nervous system mechanics and physiology. The testing protocols for neurodynamics assess the nervous system’s ability to lengthen, glide, and change amongst interfacing structures. When discussing neurodynamics, it is important to think of the nervous system as a continuum. Mechanical, electrical, and chemical changes in one part of the nervous system affect other related parts. Gross Movements and Dynamics When having a nervous system, the following qualities, movements, and buffering capabilities are necessary: Slide, glide, strain. Elongate (think gymnasts) and return from elongated position. Compress (ulnar nerve during elbow flexion). Stength (kicking a field goal). Jolting (whiplash). Repetitive forces Bending Fluid/chemical selectivity. Neural Connective Tissue These include the meninges, nerve root complex, and peripheral nerve structures. Broken down as follows: Meninges Dura mater (outer, tougher) Arachnoid mater Pia mater (inner, thinner) Nerve root complex Root Sleeve Dorsal and ventral roots DRG Spinal nerve. Peripheral nerves Epineurium Perineurium Endoneurium Mesoneurium – Sheath that surrounds a nerve. Contracts like an accordion to glide along adjacent tissues. Can become fibrotic with injury. Important Attachments Meningovertebral ligaments – anchor down to spinal canal, which could become symptomatic. Rectus capitus posterior is connected to the dura mater between the occiput and atlas; helping the dura fold. Makes you wonder what you are truly doing when you release this structure. The sympathetic trunk’s proximity to the spinal column makes it susceptible to increased loads
Read More