Chapter 2: Specific Neurodynamics

This is a Chapter 2 summary of “Clinical Neurodynamics” by Michael Shacklock. Intro Specific neurodynamics include local effects of body movements on the nervous system. So today we will go through each body region discussing these. The Spine Here are some interesting tidbits regarding the spine and neurodynamics. When we flex the spine, the spinal canal elongates by about 9 cm. Neck flexion creates significant tension to the lumbosacral nerve roots. Neural structures slide relative to the bony interface differently depending on the location and the movement used. Flexion increases tension, but reduces compression. Extension adds compression, but reduces tension. Lateral flexion increases tension on the convex/contralateral side of the spine. This situation occurs by interface and neural tissue elongation and increased distance between the spine and periphery. Rotation closes on the ipsilateral side and opens on the contralateral side. The spinal cord tends to move towards various specific segments. These areas are termed zones of convergence, and these areas include C5-6 and L4-5.  For example, tissues above C5-6 will slide toward this zone, as will tissues below this segment. The midpoint at which tissues diverge is at T6. At this point, tissues below T6 will converge towards L4-5, and tissues above T-6 will converge to C5-6. Gravity can also play a role in neurodynamics. For example, if you perform a SLR in sidelying, the downward side usually has less mobility.  This difference occurs because the neural contents are convex on the downward side and convex on the upper side,

Read More

Chapter 1: General Neurodynamics

This is a Chapter 1 summary of “Clinical Neurodynamics” by Michael Shacklock.  Concepts When we first started working with the nervous system, oftentimes we called pathological processes adverse neural tension. The problem with this name was that it left out nervous system physiology; it was mere mechanical concepts. Hence, we call the movement and physiology of the nervous system neurodynamics. General neurodynamics account for whole body fundamental mechanisms, regardless of region. Specific neurodynamics, on the other hand, applies to particular body regions to account for local anatomical and biomechanical idiosyncrasies. The System There are three parts to the neurodynamic structure: 1)      The mechanical interface 2)      The neural structures 3)      The innervated tissues The mechanical interface is that which is near the nervous system. It consists of materials such as tendon, muscle, bone, intervertebral discs, ligaments, fascia, and blood vessels. The neural structures are those which make up the nervous system. These structures include the connective tissues that forms the meninges (pia, arachnoid, and dura mater) and peripheral nervous system (mesoneurium, epineurium, epineurium, and endoneurium). The nervous system has mechanical functions of tension, movement, and compression. It also has physiological functions to include intraneural blood flow, impulse conduction, axonal transport, inflammation, and mechanosensitivity. The innervated tissues are simply any tissues that are innervated by the nervous system. They provide causal mechanisms for patient complaints, and are able to create nerve motion. When we have neural problems, sometimes the best treatment is to these structures. You must treat everything affected. Mechanical Functions

Read More