Chapter 2: Specific Neurodynamics

This is a Chapter 2 summary of “Clinical Neurodynamics” by Michael Shacklock. Intro Specific neurodynamics include local effects of body movements on the nervous system. So today we will go through each body region discussing these. The Spine Here are some interesting tidbits regarding the spine and neurodynamics. When we flex the spine, the spinal canal elongates by about 9 cm. Neck flexion creates significant tension to the lumbosacral nerve roots. Neural structures slide relative to the bony interface differently depending on the location and the movement used. Flexion increases tension, but reduces compression. Extension adds compression, but reduces tension. Lateral flexion increases tension on the convex/contralateral side of the spine. This situation occurs by interface and neural tissue elongation and increased distance between the spine and periphery. Rotation closes on the ipsilateral side and opens on the contralateral side. The spinal cord tends to move towards various specific segments. These areas are termed zones of convergence, and these areas include C5-6 and L4-5.  For example, tissues above C5-6 will slide toward this zone, as will tissues below this segment. The midpoint at which tissues diverge is at T6. At this point, tissues below T6 will converge towards L4-5, and tissues above T-6 will converge to C5-6. Gravity can also play a role in neurodynamics. For example, if you perform a SLR in sidelying, the downward side usually has less mobility.  This difference occurs because the neural contents are convex on the downward side and convex on the upper side,

Read More